Deep Multi-Instance Learning Using Multi-Modal Data for Diagnosis of Lymphocytosis

نویسندگان

چکیده

We investigate the use of recent advances in deep learning and propose an end-to-end trainable multi-instance convolutional neural network within a mixture-of-experts formulation that combines information from two types data-images clinical attributes-for diagnosis lymphocytosis. The learns to extract meaningful features images blood cells using embedding level approach aggregates them. Moreover, model these as well attributes form pipeline for Our results demonstrate even by itself is able discover associations between diagnosis, indicating presence important unexploited images. shown be more robust while maintaining performance via. repeatability study assess effect variability data acquisition on predictions. proposed methods are compared with different literature based both conventional handcrafted machine learning, models attention mechanisms. method reports balanced accuracy 85.41% outperfroms feature-based attention-based approaches biologists which scored 79.44%, 82.89% 77.07% respectively. These give insights potentials applicability practice. code datasets can found at https://github.com/msahasrabudhe/lymphoMIL.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Multi-Instance Transfer Learning

We present a new approach for transferring knowledge from groups to individuals that comprise them. We evaluate our method in text, by inferring the ratings of individual sentences using full-review ratings. This approach combines ideas from transfer learning, deep learning and multi-instance learning, and reduces the need for laborious human labelling of fine-grained data when abundant labels ...

متن کامل

Twitter Demographic Classification Using Deep Multi-modal Multi-task Learning

Twitter should be an ideal place to get a fresh read on how different issues are playing with the public, one that’s potentially more reflective of democracy in this new media age than traditional polls. Pollsters typically ask people a fixed set of questions, while in social media people use their own voices to speak about whatever is on their minds. However, the demographic distribution of us...

متن کامل

Multi-Modal Multi-Task Deep Learning for Autonomous Driving

Several deep learning approaches have been applied to the autonomous driving task, many employing end-toend deep neural networks. Autonomous driving is complex, utilizing multiple behavioral modalities ranging from lane changing to turning and stopping. However, most existing approaches do not factor in the different behavioral modalities of the driving task into the training strategy. This pap...

متن کامل

Instance-based Learning in Multi-cue Diagnosis

Decision heuristics are often described as fast and frugal, taking little time and few computations to make a good decision (Gigerenzer & Todd, 1999). Fast & Frugal Trees (F&FTs) are a type of decision heuristic that are a special case of decision trees in which there is a possible exit out of the decision process at every node in the tree (Luan, Schooler, & Gigerenzer, 2011). We present predic...

متن کامل

Deep Multi-Modal Image Correspondence Learning

Inference of correspondences between images from different modalities is an extremely important perceptual ability that enables humans to understand and recognize crossmodal concepts. In this paper, we consider an instance of this problem that involves matching photographs of building interiors with their corresponding floorplan. This is a particularly challenging problem because a floorplan, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Biomedical and Health Informatics

سال: 2021

ISSN: ['2168-2208', '2168-2194']

DOI: https://doi.org/10.1109/jbhi.2020.3038889